A Symbolic Summation Approach to Feynman Integral Calculus

نویسندگان

  • Johannes Blümlein
  • Sebastian Klein
  • Carsten Schneider
  • Flavia Stan
چکیده

Given a Feynman parameter integral, depending on a single discrete variable N and a real parameter ε, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in ε. In a first step, the integrals are expressed by hypergeometric multisums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the first coefficients of its series expansion whenever they are expressible in terms of indefinite nested product-sum expressions. In particular, we enhance the known multi-sum algorithms to derive recurrences for sums with complicated boundary conditions, and we present new algorithms to find formal Laurent series solutions of a given recurrence relation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic Summation and Higher Orders in Perturbation Theory

Higher orders in perturbation theory require the calculation of Feynman integrals at multiple loops. We report on an approach to systematically solve Feynman integrals by means of symbolic summation and discuss the underlying algorithms. Examples such as the non-planar vertex at two loops, or integrals from the recent calculation of the three-loop QCD corrections to structure functions in deep-...

متن کامل

A Refined Difference Field Theory for Symbolic Summation

In this article we present a refined summation theory based on Karr’s difference field approach. The resulting algorithms find sum representations with optimal nested depth. For instance, the algorithms have been applied successively to evaluate Feynman integrals from Perturbative Quantum Field Theory.

متن کامل

Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction

Abstract. A large class of Feynman integrals, like e.g., two-point parameter integrals with at most one mass and containing local operator insertions, can be transformed to multi-sums over hypergeometric expressions. In this survey article we present a difference field approach for symbolic summation that enables one to simplify such definite nested sums to indefinite nested sums. In particular...

متن کامل

Advanced Computer Algebra Algorithms for the Expansion of Feynman Integrals

Two-point Feynman parameter integrals, with at most one mass and containing local operator insertions in 4+ ε-dimensional Minkowski space, can be transformed to multi-integrals or multisums over hyperexponential and/or hypergeometric functions depending on a discrete parameter n. Given such a specific representation, we utilize an enhanced version of the multivariate Almkvist–Zeilberger algorit...

متن کامل

Poisson Summation Formula for the Space of Functionals

In our last work, we formulate a Fourier transformation on the infinitedimensional space of functionals. Here we first calculate the Fourier transformation of infinite-dimensional Gaussian distribution exp ( −πξ ∞ −∞ α 2(t)dt ) for ξ ∈ C with Re(ξ) > 0, α ∈ L2(R), using our formulated Feynman path integral. Secondly we develop the Poisson summation formula for the space of functionals, and defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2012